skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Joshua M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developmental plasticity is the capacity of a single genotype to express multiple phenotypes in response to different early‐life environments. Such responses are defined by reaction norms, which may vary among individuals or populations. Variation in developmental reaction norms allows natural selection to operate on plasticity and is rarely examined in vertebrates. We quantified variation in embryonic developmental plasticity within and between populations using the brown anole lizard. We captured lizards from two islands in the Matanzas River (Florida, USA) and incubated their eggs under one of two multivariate treatments that mimicked the temperature, moisture and substrates of nest sites in either a shaded or open habitat. We measured hatchling morphology, performance, and physiology to quantify variation in family‐level reaction norms. We observed evidence of family‐level variation in reaction norms for morphology but not for performance or physiology, indicating an opportunity for natural selection to shape plasticity in hatchling body size. Overall, the results indicate that multiple abiotic conditions in natural nests combine to increase or reduce phenotypic variation, and that family‐level variation in reaction norms provides a potential for natural selection to shape plasticity. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available October 13, 2026
  3. Maternal nesting behavior in oviparous species strongly influences the environmental conditions their embryos experience during development. In turn, these early-life conditions have consequences for offspring phenotypes and many fitness components across an individual’s lifespan. Thus, identifying the evolutionary and ecological causes and effects of nesting behavior is a key goal of behavioral ecology. Studies of reptiles have contributed greatly to our understanding of how nesting behavior shapes offspring phenotypes. While some taxonomic groups have been used extensively to provide insights into this important area of biology, many groups remain poorly studied. For example, the squamate genus Anolis has served as a model to study behavior, ecology, and evolution, but research focused on Anolis nesting behavior and developmental plasticity is comparatively scarce. This dearth of empirical research may be attributed to logistical challenges (e.g., difficulty locating nests), biological factors (e.g., their single-egg clutches may hinder some experimental designs), and a historical focus on males in Anolis research. Although there is a gap in the literature concerning Anolis nesting behavior, interest in nesting ecology and developmental plasticity in this group has grown in recent years. In this paper, we (1) review existing studies of anole nesting ecology and developmental plasticity; (2) highlight areas of anole nesting ecology that are currently understudied and discuss how research in these areas can contribute to broader topics (e.g., maternal effects and global change biology); and (3) provide guidelines for studying anole nesting in the field. Overall, this review provides a foundation for establishing anoles as models to study nesting ecology and developmental plasticity. 
    more » « less
  4. Abstract Vertebrate embryos require access to water; however, many species nest in terrestrial habitats that vary considerably in moisture content. Oviparous, non‐avian reptiles have served as models to understand how environmental factors, like moisture availability, influence development because eggs are often exposed to prevailing environments in the absence of parental care. Though much research demonstrates the importance of water absorption by eggs, many ecological factors that influence moisture availability in natural nests have received little attention. For example, the type of substrate in which nests are constructed is understudied. We experimentally incubated eggs of the brown anole lizard (Anolis sagrei) in 2 naturally occurring nest substrates that were treated with varying amounts of water to determine how natural substrates influence development at different moisture concentrations. One substrate consisted of sand and crushed seashells and the other was mostly organic material (i.e. decayed plant material). Both are common nesting substrates at our field site. When controlling for water uptake by eggs, we found that egg survival and hatchling phenotypes were similar between substrates; however, embryos developed more quickly in the sand/shell substrate than the organic substrate, indicating substrate‐specific effects on embryo physiology. These results demonstrate that different natural substrates can result in similar developmental outcomes if the water available to eggs is comparable; however, some aspects of development, like developmental rate, are affected by the type of substrate, independent of water availability. Further study is required to determine how natural substrates influence embryo physiology independent of water content. 
    more » « less
  5. Abstract Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems.Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life‐history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment).To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season.In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among‐individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life‐history theory.The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late‐produced offspring likely enhances maternal fitness. 
    more » « less